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SUPEROPTIMAL MIXED STRATEGIES IN ANTAGONISTIC GAMES AS THE ADVANTAGED
SUBSET OF THE OPTIMAL MIXED STRATEGIES SET

V. V. Romanuke
Khmelnytskyy National University

There has been defined the set of the most advantaged optimal mixed strategies, named the superoptimal mixed
strategies, for applying them and obtaining the potential profit in the relevant antagonistic games. The stated principle of the
superoptimality is based on the Bayes-Laplace criterion.

Keywords: antagonistic game, optimal mixed strategy, Bayes-Laplace criterion.

Problem description. There are the widespread conflict systems, which are modeled with the antagonis-
tic games theory. When the antagonistic game is solved in pure strategies, then it is simple for both players to
make the optimal and logically founded decision. When the solution is in the mixed strategies, then for making
the optimal decision every player should practice its optimal mixed strategy [1, 2]. Though the known optimality
principle gives the set of optimal game solutions, some of those optimal solutions may have an advantage above
the rest [3, 4]. Questions of selecting one of those optimal solutions were discussed in [3, 5]. The head principle
of discriminating the solutions, satisfying the optimality principle, is in aggregating the post-affects of their
application [6, 7]. A post-affect is an actual value of the game issue in some situation [6]. However, the known
aggregation of the post-affects of optimal solutions application refers to only finite number of pure strategies of
the player, and it is just the simple summation of actual values of the game issue [7].

Setting the paper task. Going into particulars, the paper [4] were devoted to the definition of suchlike
advantaged optimal solutions, but only in pure strategies. They had been divided into two sets — the set of non-

strictly rational pure strategies S',, and the set of strictly rational pure strategies S , where S, 5,. and the set
5;- is a subset of the optimal pure strategies set Sopt . And there had been shown, what profit the player gains, if

it uses the set of the strictly or the nonstrictly rational strategies by the other player receding from its set of opti-
mal pure strategies. This profit on average is greater than the game value Vopt for the first player, and lesser than

the game value VOpt for the second. The current paper will resolve the problem of defining the most advantaged

S

optimal pure strategies from the set S~r by §r # and |S

>1, and also will define the most advantaged op-
timal mixed strategies from the set of all the optimal mixed strategies. The last declared definition will general-
ize the concept of applying the advantaged optimal solutions from the set of all the optimal solutions.

Defining the advantaged subset of the optimal mixed strategies set. May a surface K (x, y) be the
kernel of an antagonistic game, where x € X is a pure strategy of the first player, y €Y is a pure strategy of
the second player, and this surface is defined on the Cartesian product X xY of the pure strategies sets of those
players. If X, < X is the nonempty set of the first player optimal pure strategies, and ¥, <Y is the non-
empty set of the second player optimal pure strategies, then there are four definitions, stated in the paper [4].

Definition 1. In the antagonistic game with the kernel K (x, y) an optimal pure strategy

\X,, V yeY.

x, € X, c X, of the first player is called the strictly rational pure strategy, if V x, € X, opt

opt

and Vx €X there is the identity V =K (xo, y) and the inequality V <K (xr, y), where

opt

X, c X , © X 1s the set of all the strictly rational pure strategies of the first player.

Definition 2. In the antagonistic game with the kernel K (x, y) an optimal pure strategy y, €Y, C ¥

of the second player is called the strictly rational pure strategy, if V y, €Y \Y,, Vx¢g X  and V y €7V,

opt

there is the identity K (x, yo) =V _ and the inequality K (x, V. ) <V

opt > Where ¥ < f, c Y, is the set of all

the strictly rational pure strategies of the second player.
Definition 3. In the antagonistic game with the kernel K(x, y) an optimal pure strategy

7
VyeY and VX € X . there is the identity V , =K (xo, y) and the nonstrict inequality V,, < K ()?r, y),

X, eXr C X, of the first player is called the nonstrictly rational pure strategy, if V x,€X

opt opt
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but Vi eX, 3yel\ Y, that V <K (%, ). where X cX opt 18 the set of all the nonstrictly rational

opt
pure strategies of the first player.

Definition 4. In the antagonistic game with the kernel K (x, y) an optimal pure strategy J, € Y ¥,

of the second player is called the nonstrictly rational pure strategy, if V y, €Y, \Y VxegX,, and

opt
V 7. €Y. there is the identity K (x, yo) =V,, and the nonstrict inequality K (x, yr)< Vs but V. j, € Y,
JxeX\X,, that K(x, y,)<V,,

ot » Where 17, c ¥, is the set of all the nonstrictly rational pure strategies of

the second player.

If S, #J and |S

opt| > 1, then a player must select a nonstrictly rational pure strategy s, € S,, , which

would provide some advantage in comparison with another optimal pure strategy s, € Sop[. On this ground
there may be defined the most advantaged optimal pure strategies from the set S~r or, generally, from the set
Sop[ . Those optimal strategies may be named as absolutely optimal or superoptimal.

Definition 5. In the antagonistic game with the kernel K (x, y) by X, #9, ¥, #9D,

opt

|Y\

e N\ {1} , an optimal pure strategy x_ . € X__ of the first player is called the superoptimal pure strat-

opt opt opt

and x< ) IS X . that

pt opt

ZK( ) # ZK( y) (1)

Ve anz opt

egy, if there are at least two pure strategies x< > eX,

and by the Bayes-Laplace criterion [8]

X, eargmaxZK X, y 2)
y%Yum
or by the multiplication criterion [§]
Xopt € 1818 {g&(vp([ H(K(x, y) |:c Igl)l(’l I)I}IEI}’IK()C y)} . sign[l —sign Igl;l rgglK(x y)D , 3)

y gYopt

where ¢ > 0. The set of all the superoptimal pure strategies of the first player is

X . = argmaxZK X, y CX = o @)

opt

Vel

by the Bayes-Laplace criterion, or

X, (c)= argmaxH(K X, y) |:c minmin K (x, y)]sign[l—

xeX xeX yeY

_slgnrgl}?rigll{(x y)D cX cX,, (5)
by the multiplication criterion.
Definition 6. In the antagonistic game with the kernel K (x, y) by X, #9, ¥, %9,

opt

‘Y \ YOpl =00, an optimal pure strategy )? LEX opt Of the first player is called the superoptimal pure strategy, if

there are at least two pure strategies X >t opt and xéiz € X, that

1 2
j K (s v)dy = j K(x, v)ay, ©6)

ysEYON y gYopt
and by the Bayes-Laplace criterion
Xop € arg)rclel)?x .[ K(x,y)dy. (7)
vy,

opt
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The set of all the superoptimal pure strategies of the first player is

Xy = argmax I K(x,y)dyc X, c X, ®)
yeY,

opt

by the Bayes-Laplace criterion.
Definition 7. In the antagonistic game with the kernel K (x, y) by X, #9, ¥, #9, and

opt
|X\X

opt

e N\ {1} , an optimal pure strategy )70pt € Yopt of the second player is called the superoptimal pure

strategy, if there are at least two pure strategies y<1> €Y . and y<2> €Y . that

opt opt opt opt
2
DK (x o) Y K(%05), ©)
ngnm xéX“N
and by the Bayes-Laplace criterion
Vo € argmin > K(x,y) (10)
xeX,

opt

or by the multiplication criterion

Vopt € argminH(K(x, y)+[c—minminK(x, y)}-signl:l—signminminK(x, y)D , (11

ye¥oy xeX yeY xeX yeY

XEA opt

where ¢ > 0. The set of all the superoptimal pure strategies of the second player is

Y, =qargmin Z K(x,y)tc Y c Yo (12)
xgX,

ye Yom

opt

by the Bayes-Laplace criterion, or

Y, (c)= argminH(K(x, y)+[c—minminK(x, y)]sign[l—

Yoy xeX yeY
xg X,

opt

_ . . . il 1
signmin r£161;1K(x, y)D ct cy, (13)
by the multiplication criterion.

Definition 8. In the antagonistic game with the kernel K (x, y) by X, #9, ¥, #9, and

opt

‘X \ X opt| = » an optimal pure strategy )70]31 € YOpl of the second player is called the superoptimal pure strat-
egy, if there are at least two pure strategies yégt €Y, and yéiz €Y, that
j K(x, yggt)dx;t J. K(x, yéi?)dx, (14)
xe Xy XEX g0
and by the Bayes-Laplace criterion
Fot eargg}i{i} J. K(x,y)dx. (15)
xegX,

opt

The set of all the superoptimal pure strategies of the second player is

T, = {arg min j K(x,y)dxfc ¥ c¥,, (16)

XeX ot

by the Bayes-Laplace criterion.
For understanding the last four definitions consider an example. Let the matrix
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1 2 0 0 0 05 0 0]
0 0 0 0 0 00 0 0
K(x )= -1 0 1 0 1 40 -2 -1 0 a7
21 1.0 1 001 0 0
00 1 00 000 0 0
|6 -1 30 -2 20 2 -6 -9

be the kernel of the antagonistic game, where the row number &k corresponds to the pure strategy x, of the first

player V k=1,_6, and the column number [/ corresponds to the pure strategy », of the second player

V [=1,10. Consequently, here the pure strategies sets of the players are X = {xk}Z:1 and Y = { y,};il .
Clearly, that this game is solved in pure strategies with the game value V, , = 0, and the set
X o =151 Xy, %40 X5 (18)
the set
Y()pt:{y47y6’y77y9’y10}‘ (19)

By the four first definitions in the exampled game there are the following primarily advantaged subsets of the
sets (18) and (19). The set of the nonstrictly rational pure strategies of the first player is

)~(,, = {x,, Xy, xs} = {Xopt \{xz}} c XOpt = {xl, Xy Xy xs} s (20)
and the set of the nonstrictly rational pure strategies of the second player is
Y, = {6 Yor Yo} ={To M4 371} € ¥ = {00 Yo 222 Yo W10 - 1)
Deeper, the set of the strictly rational pure strategies of the first player is
X, = {x4} = {Xr \{xl, xs}} cX, = {xl, Xy, xs} = {Xopt \{xz}} c Xopt = {xl, Xy, Xy, xs} , (22)

and the set of the strictly rational pure strategies of the second player is

Y= {6 v} = {1\ o € 1 = {36 o0 210} ={Top Mas 921} < Yo = {045 Y6 35 2o 310} - (23)

The set of the superoptimal pure strategies of the first player is

)?optz argrnaxZK(x, y) =Jarg max Z K(x, y) =

XeX o xe{xl, X5, X4, x5}
yeYoy, Y&{4s Ys» Y7+ Yor Vio}

={arg max  {(1+2+0+0+5),(0+0+0+0+0), (2+1+1+1+1), (0+0+1+0+0)}}=

xe{xy, X, Xy, X5}

= {arg max {8, 0, 6, 1}} = {xl} = {f(, \{x4, x5}} (24)

xe{x, Xy, X4, X5}

by the Bayes-Laplace criterion with the formula (4). By the multiplication criterion this set is

X (1)= arg)rclel)e(ln);l_‘[(l{(x, y)+[1—r£1€i)1(11}16i;1[<(x, y)]sign[l—signr)gglr;leiyl{(x, y)D =
yeY,

opt

= argxe{xrr;w; . H (K(x, y)+[1—(—9)}-sign[l—sign(—9)}) =
U el Yo v 350 o)

sjarg_max [T [K(x2)+10sien(2)] 1=

Y&{V4. Vos Y74 Vos Y10}

=Jarg max H I:K(x, y)+10:| =

xe{x, xz,x4,x5}
YE{Va> Vo> Y15 Yo» Yo}

={arg max {(11-12-10.10-15),(10-10-10-10-10),(12-11-11-11-11),(10-10-11-10-10)}}:

xe{x;, Xy, X4, X5}
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- {arg max  {198000, 100000, 175692, 110000}} =} ={X, \{x,, %} (25)

XEX], Xy, Xy, Xs
with the formula (5) for ¢ =1. It is situational that the needed set, been found by two criterions, is the same. But
generally, there exist such antagonistic games, where 3 ¢ > 0 there is the statement

Xopt ﬂ Xopt ( ) @ : (26)
The set of the superoptimal pure strategies of the second player is
Yt: argmmZK X, y =Jarg min Z K(x,y) =
Yot oy }’E{}’zzv}’es)’hJ’9s."10}x€{x o }

:{arg min }{(0+0),(—4—2),(O+O),(—1—6),(0—9)}}:

ye{y4 s Yer V75 Vos V1o
=!ar min 0,-6,0,-7,-9}1= =17 \{ s, 27
{ g)}é{}’4,)26,))7,y9,y10 { }} {ylo} { g {y6 yl)}} ( )
by the Bayes-Laplace criterion with the formula (12). By the multiplication criterion this set is

Y, (1)= argminH(K(x, y)w{l—minminK(x, y)}-sign[l—signminminK(x, y)D =

yel¥oy xeX yeY xeX yeY
opt

- argye{,w,}Ti?,yg,ym}xg{xn . }(K(x, y)+[1—(—9)]-sign[1—sign(—9)]) -

- argJ’E{J’AJ’l;l:lgl’yg’} H [K x y +10 Slgn(z):' -

=<arg min | I [K X,y +10:|
yE{y4, Vo> V15 Y95 Mo
X5 X5 X4 5

:{arg min {(10-10),(6.8),(10-10)’(9.4)’(10,1)}}:

}'E{J’zh Yes V1595 Y10}
= {arg . min {100, 48,100, 36, 10}} = {30} ={T\ (36> 3o}} (28)
YEW4> Vs> V75 Yos Vo
with the formula (13) for ¢ =1. And once again the needed set, been found by two criterions, is the same. But
generally, there exist such antagonistic games, where 3 ¢ > 0 there is the statement

T N, (c)=2. )
Hence, if in the exampled game the first player applies the superoptimal pure strategy X, then in average

it obtains the greatest advantage when the second player swerves from applying the set ¥, . The same could be

said about the situation when the first player swerves from applying the set X . In that case if the second
player applies the superoptimal pure strategy y,, then in average it obtains the greatest advantage. Nevertheless,

applying the sets X

opt
tage, rather than the greatest advantage in the single play. Say, if the second player swerves from applying the set

Yopt and selects the pure strategy , then the first player payoff is VOpt , though if it selected a non-superoptimal

and Yopt ensures both players in obtaining the mathematically expected greatest advan-

pure strategy x, or X, it would obtain the payoff Vopt +1. Besides, holding at the strictly rational pure strategy
x, would ensure the first player in obtaining the payoff, which is greater than Vopt , for every time when the

second player swerves from applying the set Yopt. So, the stated above superoptimality concept for pure strate-

gies is acceptable for the cases, when the applied superoptimal pure strategy is a strictly rational pure strategy or
there is the sufficiently great number of the game plays, that will allow to obtain the mathematically expected
greatest advantage.

Henceforward will consider antagonistic games, which generally are solved in mixed strategies. May
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Dopt (x) be an optimal mixed strategy of the first player, and g, ( y) be an optimal mixed strategy of the sec-
ond player, which satisfy the double inequality

j IK X, ¥) P(X) Gy (v) dixdy <V, =

xeX yeY

— | [K 2 P (a ()etitr < [ [ K (5 9) p () () (30)

xeX yeY xeXyE.Y

by the conditions

p(x)e p(x):p(x)}OVxeX, .p(x)dle =, €2))

xe.X
q(v)eqq(y):q(»)>0V yeY, |q(y)dv=1=&, (32)

yeY

where p, (¥)e @, <@ and q,,(v)e I, =& . Subsequently, & is the set of all the mixed strategies

opt
of the first player, & is the set of all the mixed strategies of the second player, Qip[ is the set of all the optimal
mixed strategies of the first player, C%p[ is the set of all the optimal mixed strategies of the second player. Of

course, a mixed strategy (31) of the first player and a mixed strategy (32) of the second player may be implied
for matrix games or games with the enumerable set of the pure strategies with the nonzero optimal probabilities.
On this ground there are the following definitions for the superoptimality concept in the mixed strategies.

Definition 9. In the antagonistic game with the kernel K (x, y) an optimal mixed strategy

ﬁopt (x) € Qg of the first player is called the superoptimal mixed strategy, if there are at least two mixed strate-

gies pégt( )€, and pop>( )€ &, that

t

.[ I J.K X, y popt ) (y)dxdy d[q(y)];é

S \ XEX yeY

# I _[ _[K (x, ¥) P8l (x)q () ey |d[ q(»)]. (33)
q(y)e&p‘ xeX yeY
and by the Bayes-Laplace criterion

Pope (X )eargp max, I I IK(x, V) Pop (x)q () dxdy d[q(y)]. (34)
) q()epy \ xeX ye¥

The set of all the superoptimal mixed strategies of the first player is

T = a1g MAX f f IK (%, ) P (¥)q (¥)dxedy |d [ g () ] < &, (35)
- " q(9)eHp \ x€X yev

by the Bayes-Laplace criterion. The exterior integrals in the formulas (33)-(35) are the generalized Riemann
integrals [9-12] of the variable q( y) over the subset of the set &, where the function q( y) & &opt .

Definition 10. In the antagonistic game with the kernel K (x, y) an optimal mixed strategy

ciopt ( y) € &opt of the second player is called the superoptimal mixed strategy, if there are at least two mixed

strategies qépl( )€ &, and qépl( )e &, that

-[ .[ IK x, ) p(x)a, () dely d| p(x)]=

oy \ ¥eX ye¥
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.[ .[ J.K % ) p(x) 4 (y)dvdy |d[ p(x)]. (36)

P(x)e@ \ xeX yeY

and by the Bayes-Laplace criterion

G (v)earg min [ | [K () p(x)a (v)aaty [ p(x)]. 6
- " P(x)eZoy \ xeX yev

The set of all the superoptimal mixed strategies of the second player is

&:ptz argqmlr(men&m I I J K (x, y) p(x)qop (v)dxdy d[p(x)] <&, (38)
x)ey \ xeX yeY

by the Bayes-Laplace criterion. The exterior integrals in the formulas (36)-(38) are the generalized Riemann
integrals of the variable p(x) over the subset of the set &, where the function p( ) 2 A

For comprehending the last two dual definitions consider an example on the nonstrictly convex game with
the kernel [13]

K(x, y):ax2+bxy+cy+k, 39)

that is defined on the unit square
Sy =X xY =[0;1]x[0; 1] (40)
with the nonzero coefficients a, b, ¢ and the constant kK € R, where xe X = [0; 1] and yeY = [O; 1] are
the pure strategies of the first player and second player correspondingly, and V xe X, V ye¥ there is the

0’ K (x,
nonstrict inequality %2 0. In the case when a >0, b<0, ¢c<0, a+b=0 [13, p. 187], the maxi-
V

mum of the kernel (39) by the variable x on the unit segment X = [0‘ 1] is [13]

maxK(x y) maxK(x y) max(ax +bxy+cy+k) max(ax —axy+cy+k)

xeX xe[0; 1] xe[0;1] xe[0; 1]
=max{K(O, y), K(l, y)} =max{cy+k, a—ay+cy+k} =a—ay+cy+k=K(1, y). 41)
The result in the statement (41) is pretty clear, as on the unit segment X = [O; l] the maximum of the parabola
(39) as the function of the variable x may be reached either in the point x=0 or x=1, and inasmuch as
a—ay=0 Vye [O; 1] , then this maximum is reached in the point x =1. Subsequently, the minimum of the
line (41) on the unit segment ¥ = [O' 1] is [13]
mlnmaxK(x y) min_max K(x y) min K(l y)

ye¥ xeX ve[0;1] x€[0; 1] ye[0;1]

[0 ](a ay+cy+k)

=min{K(1,0), K(1,1)} =min{a+k, a—a+c+k}=min{a+k, c+k}=c+k=K(,1)=V,, . (42)
The minimum (42) is reached in the point y, = 1, that is by the definition

Y, =argminmax K (x, y)=arg(£%gg]K(1, y)=argyrer[1(i);r}](a—ay+cy+k):{l} ={yopt} . (43)

opt ye¥ xeX

The solutions of the corresponding equation [13]
V. =c+k=K(1, 1)=ax2 +bx+c+k=ax’ —ax+c-|—k=K(x, 1)=K(x, yopt) (44)

opt

are x, =0 and x, =1. However, here are the negative values [13]

K d(ax} +bx,y+cy+k
d (xlﬂy) _ (ax] YTy )| =bx,+c=n=—ax,+c=c, (45)
dy . dy
opt V=Yopt
K d(ax; +bx,y+cy+k
d (xz,J’) _ (axz nLyTae )| =bx,+c=rn=—ax,+c=c—a, (46)
dy Y=Yopt b y=y

opt

and, properly, the equation [13]
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P(xl)r1 -I—P(xz)rzzP(xl)r1 -I—[l—P(xl)]rz:O 47)
for the probabilities P(xl) and P(xz) of selecting the pure strategies x;, =0 and x, =1, where
P ()c1 ) + P(x2 ) =1, has no sense. Then, including the set X opt = {xl, xz} = {0, l} , the optimal mixed strategy
of the first player is

1

Pon (¥) €&, = {p (%) P ()= 0V x€[0: 1], pyy, (x) =0V x€(0: 1), J'p (x)dx = 1} . (48)
0

Actually, the set (48) may be stated in the optimal probabilities of selecting the pure strategies x;, =0 and

x, =1, that is

o (0)€[0:1]. By (1) €[05 1], By (0)+ B (1) =1 (49)

Then by Definition 9 firstly will state for u € {1, 2} the expected payoff of the first player:

[ KGnrix)a)aay=ril(©0) [ K0 )a()ar+ 22 0) [ K(Ly)a(r)dy=

xeX yeY ye[0:1] ye[0:1]

—Opt J.KOy ()dy+1PO:[ J.Kly

1

=IK(1,y) »)dy+ Pl UK (0, v)q j (1, y)a(» )dy}

0

= [[K (1 )+ (0, 7) P (0)= K (1, y) P (0) Ja(v)dy =

=j[(a—ay+cy+k) +(cy+k)- 0<pt>(0) (a—ay+cy+k)- (fpf(O)Jq(y)dy:

1

= J‘[a —ay+cy+k+ cyPO<l;'t> (0)+ P (0)- aP"! (0)+ ayP(fpul> (0)- cyPo<;> (0)- kP (0)] q(y)dy=

opt opt opt
0
1

=J.[a—ay+cy+k—aPo<p"t>(O)+ayR)<;> (O)Jq(y)dy =

0

J.[ (aRf;?(O)nLc—a) aPo<pt>(O)+a+qu(y)dy. (50)

0
The integration in the formula (33) over the set of the mixed strategies of the second player (32), where

each element of this set q( y) & &Opt’ is represented as the generalized Riemann integral with the subintegral

function (50). If some optimal mixed strategy of the first player p<1> ( ) is PV (0) =0 then in the left side of

opt opt

.[ (J‘ J.K X, y (y)dxdy]d[q(y)}

%&p‘ xeX yeY

= J. [J-[y(c—a)+a+k]q(y)dy]d[q(y)}. (51)

4(¥)edy \ 0

the inequality (33) have

And if some optimal mixed strategy of the first player p<2> (x) is R.<pzt> (O) =1 then in the right side of the ine-

opt

quality (33) have
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[ [ [ rieamas = [ | orsdams |dam). o

9(v)efy \ xeX yer a(»)ed \ 0

Inasmuch as V y € [0; 1] within the subintegral functions of (51) and (52) there is the statement
y(c—a)+a+k—(cy+k)=a—ay>0, (53)

which turns into the equality by y =1 and every mixed strategy of the second player q( y) ¢ &Opt belongs to

the set

Y\ = q(y):q(y)=0V ye[0;1], IJ.( Ydy=1¢\

\ q(y) ( ) OVye[Ol >0J. dy—l , (54)

then it is clear that the generalized Riemann integrals (51) and (52) have different values:

f I IK x, ¥) Pl (x)a(v)dxdy |d[q(y)]=

(¥)e&hn \ xeX ye¥

1 1

- J. J.I:y(c a)+a+k]q )dy d[q ] J. I[C)""k]‘I(J’)dy d[q(y)]=

‘I(y)ﬁC%pl 0 (}’)éC%pl 0

= [ ] ] [5G xa()dsa jala(r)]. 53)

9(7)eHpy \ xeX yeY

Accordingly, the inequality (33) in Definition 9 is true, and there is the nonempty set of the superoptimal mixed
strategies of the first player in the being exampled game. Here, actually, for determining the set (35) it is suffi-
cient to determine the maximum of the statement

(p[P (0)] (aP<>(0)+c—a)—aPOg?(O)+a+k=(ay—a)P (0)+a+(c—a)y+k (56)

opt opt opt
within the subintegral function (50) by the variable £, (0) on the segment [0; l] . With the inequality (53) it is

obvious, that the line (56) on the segment [0; 1] has its maximum in the point £, (0) =0. Subsequently, this

point designates the set

Tom o s, | {I I K(xay)pom<x>q<y>dxdy]d[q<yﬂ -

q(» r’)%(%p, xeX yeY

:{p(x): p(x)=0V xe[0;1), p(1)>0, ].p(x)dx—l}c &, (57)

of the single superoptimal mixed strategy of the first player. Applying the single element of this set, that is
POpt (1) =1 or, more clearly, applying the pure strategy x = Xopt = 1, the first player gets the maximized advan-
tage as soon as the second player swerves from applying the single pure strategy . = 1. For instance, if the
second player selects ¥ =0.9 owing to some unknown motives, then by applying the set (57) the first player
gets the payoff, equal to the value

K(l,0.9)=a—a'0.9+c~0.9+k=0.1a+0.9c+k. (58)
In the same situation, if the first player had selected the strategy, that is not the superoptimal mixed strategy from
the set (57), say, if P (O) =0.3 then the expected payoff would have been equal to the value

opt

K(0,0.9)- P, (0)+K(1.0.9)- P, (1)=K(0,0.9)- R, (0)+ K (1,0.9)-[1- B, (0) ] =
= 0.3K(0, 0.9)+ 0.7K(1, 0.9) = O.3(c-0.9+k)+0.7(a—a-0.9+c-0.9+k) =
=0.27¢+0.3k+0.07a+0.63¢+ 0.7k =0.07a+ 0.9¢c + k . (59)
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And here apparently, that the value (58) is greater than the value (59) for the positive number 0.03a .
As for the second player, then in this exampled game }ipt =(J or, more generally, %pt = . It flows

outright from that the inequality (14) or more general inequality (36) cannot be true.

Conclusion and further investigation prospect. There exist such antagonistic games, where may be de-
termined and applied as the most advantaged optimal pure strategies, as well as the most advantaged optimal
mixed strategies of a player. Application of these advantaged subsets of the optimal mixed strategies set gives
the most great potential profit. For the player, which is applying the most advantaged optimal mixed strategies,
named the superoptimal mixed strategies, this potential is implemented every time, when the other player
swerves from applying its optimal mixed strategies. The defined sets of the superoptimal mixed strategies, which
are found by (35) and (38), may be considered as the generalization of the pure strategies superoptimality, stated

in the paper [4]. Therefore, the players are recommended instead of their optimal mixed strategies sets Qip[ and

C%p[ to apply their superoptimal mixed strategies sets Qﬂ;ﬁ and %pt . The investigated above superoptimality is

based on the Bayes-Laplace criterion. However, there remain some questions of the analytical calculation of the
generalized Riemann integral [14], been figured in the formulas (33)-(38). Though for some convex games, like
the exampled game with the kernel (39), it is easy to evaluate the emergent generalized Riemann integrals, the
further investigation prospect should be viewed at peculiarities of that integration.

PE3IOME

O3HayeHO MHOXKHHY ONTHUMAaJbHHUX 3MIllIAHUX CTpaTeriii 3 HaOLIBIIOK MepeBarow, Ha3BaHUX CYHIEPONTUMATbHIMH
3MIMIAaHUMH CTpATETisIMH, A IX 3aCTOCYBAaHHS Ta OTPHMAHHS NOTEHMIHHOI KOPHUCHOCTI y BIJIIOBIJHUX aHTAarOHICTUYHHX
irpax. BukiageHuii npuHIUI CyneponTHMaILHOCTI 3aCHOBaHUH Ha Kputepii baiteca-Jlamnaca.

Kniouoei cnosa: aHTaroHicTHYHA Tpa, ONTHMabHA 3MilllaHa CTpaTeris, Kpurepiil baiteca-Jlamnaca.

PE3IOME

OmnpezieneHo MHOXKECTBO ONTHMAIbHBIX CMEIIAHHBIX CTPATETHi ¢ HAHOONBIIUM NPEUMYIIECTBOM, Ha3BAHHBIX Cy-
MEPONTUMATBEHBIMU CMEIIAHHBIMU CTPATeTUsIMU, U1l UX TMPHMEHEHHS W HOJydeHHs MOTCHIUAIBHON IOJIE3HOCTH B ITOJX0-
JIIMX aHTarOHUCTUYECKUX Urpax. M3moKeHHbli MpUHLIMT CyNepONTUMAIbHOCTH OCHOBAH Ha Kputepun baiteca-Jlannaca.

Kniouesvie cnosa: anTaroHucTUYeCcKas UTpa, ONTUMAallbHAs CMELIAHHAs CTpaTerus, kputepuii baiieca-Jlamnaca.

REFERENCES

1. Pomanrok B. B. Merox peamizamii onTUMalbHHX 3MilIaHUX CTpaTerii y MaTpuU4Hid Ipi 3 MOPOXHBOI MHOXXHHOIO
CIUTOBHX TOYOK Yy YHCTHX CTPATErisx 3 BiJOMOIO KinbkicTio mapTtiii rpu / B. B. Pomantok // Haykosi Bicti HTYY KIII. —
2009. — Ne 2. — C. 45-52.

2. Romanuke V. V. Method of practicing the optimal mixed strategy with innumerable set in its spectrum by unknown
number of plays / V. V. Romanuke // Measuring and Computing Devices in Technological Processes. — 2008. — Ne 2. —
P. 196-203.

3. Romanuke V. V. Determination of the optimal pure strategies subset as the latent predominance set in some matrix
games / V. V. Romanuke // Scientific Papers of Donetsk National Technical University. Informatics, Cybernetics and
Computer Science. —2009. — Vol. 10. — P. 46-53.

4. Powmantok B. B. [TutanHs BHOKpeMIICHHS MIIMHOXHMHH PaLliOHATbHUX YUCTHX CTpATeriil rpaBLiB y ACSKUX aHTarOHiCTH-
yHux irpax / B. B. Pomanrok // Tndopmariiiini Texuomnorii Ta komm’rotepHa imxeHepis. — 2009. — Ne 3. — C. 47-52.

5. Mamenko C. O. JlokanpHi yMOBH c1a0KoOi iHANBIAyanbHOT onTUMansHOCTI piBHOBar / C. O. Mamenko // Bicauk Kuics-
Koro yHiBepcutety. Cepist: ¢i3.-mat. Hayku. — 2008. — Ne 1. — C. 127-136.

6. Kumkov S. I. Optimal strategies in a differential game with incomplete information / S. I. Kumkov, V. S. Patsko // Tr.
Inst. Mat. Mekh. — N. 3. - 1995. — P. 104-131.

7. AnexcanapoB B. B. Msrkoe TecTHpoBaHHE TOYHOCTH CTaOWIIM3aLMKM M CEIUIOBHIE TOYKH B T€OMETPUYECKHX Hrpax /

B. B. Anekcanapos, JI. 0. brnaxennosa-Mukysuy, Y. M. T'ytuepec-Apuac, C. C. Jlemak / BectHuk MOCKOBCKOTO yHHU-

Bepcutera. Cepus 1. Maremaruka, Mmexanuka. —2005. —Ne 1. — C. 43-50.

Myuk D. MeToapl NpUHATHS TeXHHYIECKHX petueHnii / Mymmk 3., Miomutep I1. — M. : Mup, 1990. — 208 c.

9. Ilomos B. H. KonTuHyansHble HHTETPAIBI B KBAHTOBOW TEOPUH TOJIS M cTatucThdeckoi ¢usuke / [TomoB B. H. — M.:
Atommsaar, 1976. — 256 c.

10. Bepesnn @. A. KonTHHYyanbHBIH HHTETpall IO TpaeKTopusiM B (azoBoM npoctpanctee / @. A. Bepesun // Ycnexu mate-
MaTuyeckux Hayk. — 1980. — T. 132, Boim. 3. — C. 497-548.

11. Gregus M. On the deterministic computation of functional integrals in application to quantum mechanical problems /
M. Gregus, Yu. Yu. Lobanov, O. V. Sidorova, E. P. Zhidkov // J. Comp. Appl. Math. — 1987. — V. 20. — P. 247-256.

12. XKunkos E. I1. [Tpubnmx&nHoe BHIYUCIEHHE KPATHBIX KOHTHHYAJIBHBIX HHTEIPAJOB B MHOI'OMEPHBIX 3a/lauyax KBaHTOBOM
¢wmsukn / E.IT.Kunkos, F0.10.JIo6anos, P.P.1llax6arss // Matem. mogenupoBanue. — 1990. — T. 2, Ne 10. — C. 110-119.

13. Pomantok B. B. IlpexacraBieHHs OOuHAAUATH BHUMAJAKIB 3arajbHOrO PO3B’SI3KY OJHIE] HECTPOro BHIYKJIOl rpu /
B. B. Pomantok // BicHuk XMenpHUIBKOTO HaIiOHATIBHOTO yHiBepcuTeTy. TexHiuni Hayku. — 2008. — Ne 4. — C. 184-191.

14. VBanoB B. B. Metoas! Beruucnenuit Ha 9BM / B. B. lBanos. — K. : Hayk. nymka, 1986. — 584 c.

®

Received May 7, 2010

298 Romanuke V. V.



